叶红雨

发布时间:2015-10-13 发布者:系统管理员 浏览次数:

姓名

叶红雨

职称及荣誉

副教授

性别

联系电话


电子邮件

yyeehongyu@163.com

通信地址或办公室

太阳成集团tyc7111cc22306

研究方向

非线性分析、非线性偏微分方程

工作经历(包括社会兼职)

2014-至今 太阳成集团tyc7111cc数学与统计系

➤主要论文

1. The existence and   nonexistence of global L2-constrained minimizers for Kirchhoff equations with   L2-subcritical general nonlinearity, H.Y. Ye, L.N.   Zhang, Mathematical Methods in the Applied Sciences, 2023,   46(5), 5234–5244.

2. The existence of   normalized solutions for L2-critical quasilinear Schrödinger equationsYe, H., Yu, Y.   Journal of Mathematical Analysis and Applications, 2021,   497(1), 124839.

3. On the concentration   phenomenon of L 2 -subcritical constrained minimizers for a class   of Kirchhoff equations with potentials, G.B. Li, H.Y.   Ye, J. Differential Equations, 2019, 266(11), 7101–7123.

4. Multiplicity and stability   of standing waves for the nonlinear Schrödinger-Poisson equation with a   harmonic potential, Luo, X., Ye, H.Mathematical Methods in the Applied Sciences, 2019,   42(6), 1844–1858.

5. On the mass   concentration of L2 -constrained minimizers for a class of   Schrödinger–Poisson equations,Ye, H., Luo, T.Zeitschrift fur Angewandte Mathematik und Physik, 2018,   69(3), 66.

6. Positive solutions   for critically coupled Schrödinger systems with attractive interactions,Ye, H.

Discrete and Continuous Dynamical Systems- Series A, 2018,   38(2), 485–507.

7. Existence of   positive ground state solutions for the nonlinear Kirchhoff type equations in   R^3, G.B. Li, H.Y.   Ye, J. Differential Equations 2014,257 (2),   566–600.

➤主要科研项目

1.国家自然科学基金青年项目,11501428,两类非局部椭圆型方程解的存在性与解的性质研究,2016/01-2018/1218万,已结题,主持人:叶红雨

➤主讲课程

《高等数学》《线性代数》

➤主要获奖情况

1.入选2023年斯坦福大学发布的“年度科学影响力排行榜”。


上一条:徐帆 下一条:余厚习

关闭